Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension.
نویسندگان
چکیده
The controlled self-assembly of complex molecules into well defined hierarchical structures is a promising route for fabricating nanostructures. These nanoscale structures can be realized by naturally occurring proteins such as tobacco mosaic virus, capsid proteins, tubulin, actin, etc. Here, we report a simple alternative method based on self-assembling nanotubes formed by a synthetic therapeutic octapeptide, Lanreotide in water. We used a multidisciplinary approach involving optical and electron microscopies, vibrational spectroscopies, and small and wide angle x-ray scattering to elucidate the hierarchy of structures exhibited by this system. The results revealed the hexagonal packing of nanotubes, and high degree of monodispersity in the tube diameter (244 A) and wall thickness (approximately equal to 18 A). Moreover, the diameter is tunable by suitable modifications in the molecular structure. The self-assembly of the nanotubes occurs through the association of beta-sheets driven by amphiphilicity and a systematic aromatic/aliphatic side chain segregation. This original and simple system is a unique example for the study of complex self-assembling processes generated by de novo molecules or amyloid peptides.
منابع مشابه
Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach.
Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fas...
متن کاملElucidation of the self-assembly pathway of lanreotide octapeptide into beta-sheet nanotubes: role of two stable intermediates.
Nanofabrication by molecular self-assembly involves the design of molecules and self-assembly strategies so that shape and chemical complementarities drive the units to organize spontaneously into the desired structures. The power of self-assembly makes it the ubiquitous strategy of living organized matter and provides a powerful tool to chemists. However, a challenging issue in the self-assemb...
متن کاملDNA-templated CMV viral capsid proteins assemble into nanotubes.
This communication describes the in vitro assembly of genetically recombinant Cucumber Mosaic Virus (CMV) viral capsid proteins (CPs) into biological nanotubes, several micrometres long yet with a diameter of only approximately 17 nm, triggered by double-stranded DNAs of different lengths.
متن کاملSelf-Assembly of Icosahedral Viral Capsids: the Combinatorial Analysis Approach
An analysis of all possible icosahedral viral capsids is proposed. It takes into account the diversity of coat proteins and their positioning in elementary pentagonal and hexagonal configurations, leading to definite capsid size. We show that the self-organization of observed capsids during their production implies a definite composition and configuration of elementary building blocks. The exac...
متن کاملSynthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein
In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 18 شماره
صفحات -
تاریخ انتشار 2003